Flexible Camera architecture for generic space imaging applications

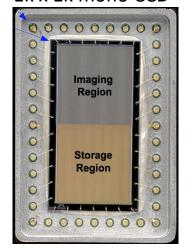
Low-Cost Planetary Missions Conference, Pasadena, California

Why does NASA pursue custom camera developments?

- Demanding Science/engineering performance requirements
 - High resolution, large format detectors
 - Sensitivity/SNR/Wavelength Cutoff Requirements
 - Tailored Image processing
- Environmental screening (mission assurance)
 - Radiation, wide-temperature operation, assembly techniques
 - Parts screening, derating, performance across temperature

<u>Takeaway:</u> NASA has a need for adaptable, scalable camera architecture that can evolve with different mission requirements

MER Pancam (shown as flown) with as-flown electronics, 8-position filter wheel, with optics to be modified from 16° x 16° FOV to 5.5° x 5.5° FOV.


MER Navcam

Present and future detectors on JPL/NASA Planetary Cameras

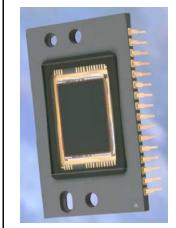
Relative scales preserved

CUSTOM

Custom JPL
designed and
fabricated detector
1k x 1k mono CCD

MER, MSL (Engineering cameras) 2003-2012

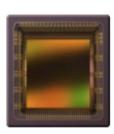
Custom JPL designed and fabricated detector 1k x 1k CCD, Bayer CFA



Insight IDC/ICC (2018)

COTS

Kodak TrueSense/ON Semi KAI-2020 1640x1214


RGB CCD

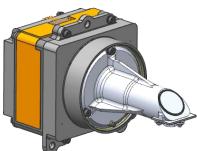
Curiosity
MastCam
(2012), M2020
Mastcam-Z

(2020)

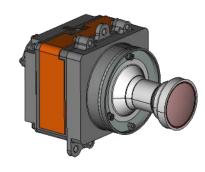
CMOSIS CMV4000 2048x2048 RGB CMOS

M2020 SuperCam RMI (2020)

CMOSIS CMV20000 5120x3840 RGB/Monochrome CMOS


M2020 Engineering cameras (2020)

Mars2020 Enhanced Engineering Cameras (EECAM)


- Successor to MER/MSL Engineering Cameras
- Mission-critical imaging system (Class B hardware)
- Extensive hardware screening and qualification program
- To lower schedule risk, Mars2020 chose to baseline a COTS focal plane array (screened at JPL)
 - Departure from historical Class B imaging system developments
 - Characterization over environments
 - Radiation testing

Key: Significant NRE in the development of EECAM can be infused for future camera systems

Mars2020 CacheCam

Mars2020 NavCam

Hazard Camera

Camera

Sample Caching System

Mars2020 EECAM Camera Specifications Sensor Capabilities Type 20M Pixel CMOS Image Sensor **Array Size** 5120 x 3840 Pixel Size and Pitch 6.4um² on 6.4um Pitch Full well charge 15ke⁻ **Pixel Dark Noise** 8e-RMS Yes Windowing Shutter Global Color Bayer RGB Color **Pixel Quantization** 12bit **Electrical Interface Commanding & Data** LVDS Protocol MER/MSL/Mars2020 NVMCAM +5.5V (+/- 0.4V) **Power Input Power** < 3 WMemory 1Gbit SDRAM **FPGA** MicroSemi Rad-Tolerant ProASIC3 **Camera Specifications** Mass (CBE, no optics) < 425g65 mm x 75 mm x 55 mm Volume (CBE, no optics) **Operating Temperature** -55C to +50C Range Survival Temperature Range -135C to +70C **Optics Configurations Navigation Camera**

95°X 71°(H x V), f/12, iFOV < 0.32 mrad/pix 134°X 110°(H x V), f/12, iFOV < 0.46 mrad/pix

0.49 magnification, 130mm stop to plane-of-

focus, +/- 5mm Depth of Field

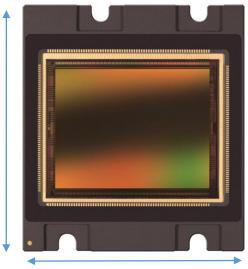
Mars2020 EECAM Camera Specifications

Sensor Capabilities			
Type	20M Pixel CMOS Image Sensor		
Array Size	5120 x 3840		
Pixel Size and Pitch	6.4um ² on 6.4um Pitch		
Full well charge	15ke ⁻		
Pixel Dark Noise	8e ⁻ RMS		
Windowing	Yes		
Frame Rate	0.45 Frames/sec		
Shutter	Global		
Color	Bayer RGB Color		
Pixel Quantization	12bit		

Electrical Interface

Commanding & Data	LVDS		
Protocol	MER/MSL/Mars2020 NVMCAM		
Power Input	+5.5V (+/- 0.4V)		
Power < 3 W			
Memory 1Gbit SDRAM			
FPGA MicroSemi Rad-Tolerant ProASIC3			
Camora Specifications			

Wilclosetti Rad-Toleratic PTOASICS				
Camera Specifications				
Mass (CBE, no optics)	< 425g			
Volume (CBE, no optics)	olume (CBE, no optics) 65 mm x 75 mm x 55 mm			
Operating Temperature Range -55C to +50C				
Survival Temperature Range	-135C to +70C			
Optics Configurations				
Navigation Camera 95°X 71°(H x V), f/12, iFOV ≤ 0.32 mrad/pix				


Hazard Camera

Sample Caching Camera

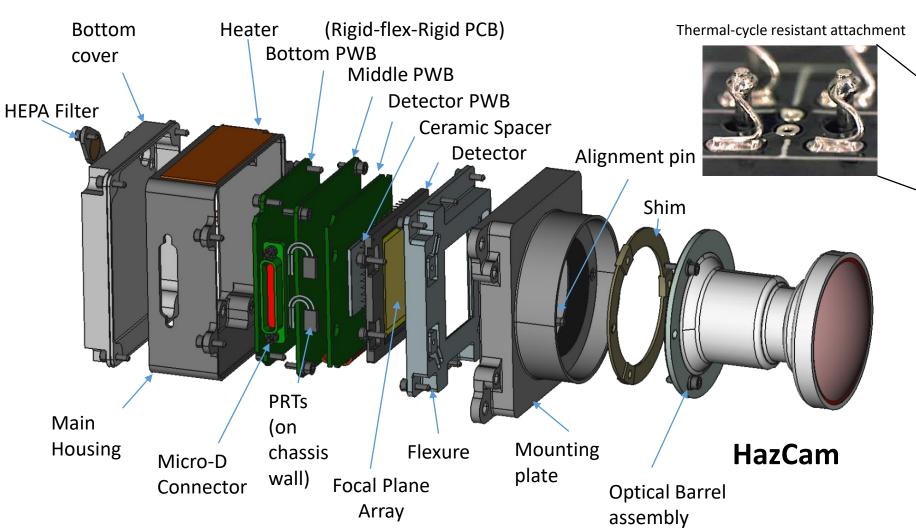
134°X 110°(H x V), f/12, iFOV \leq 0.46 mrad/pix

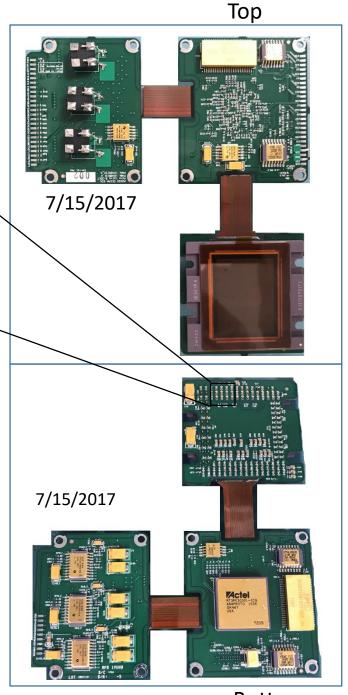
0.49 magnification, 130mm stop to plane-of-focus, +/- 5mm Depth of Field

CMOSIS CMV20000

52mm

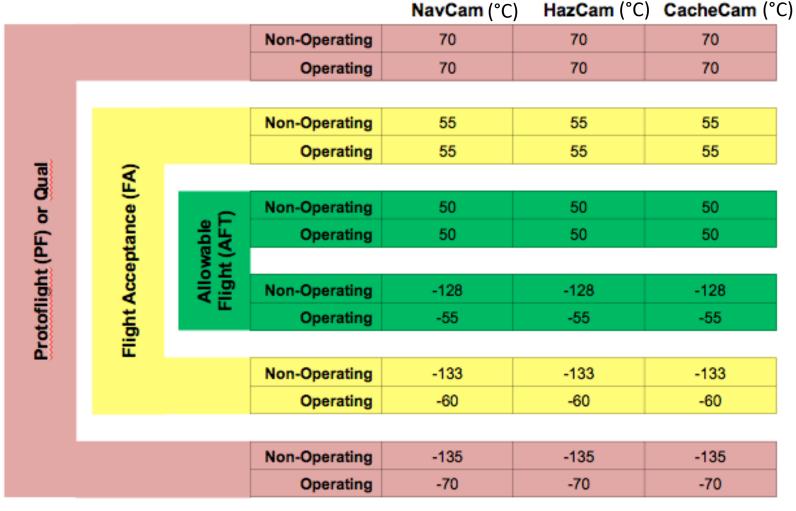
48mm


Mars2020 EECAM Engineering Development Unit


M2020 EECAM Hardware Development Team

* Taken with EECAM prototype, 2/16/2017

Mars2020 EECAM Camera Design



Bottom

Mars 2020 EECAM Environmental Test Levels

Thermal Performance and Test Levels

Packaging Qualification & Verification (PQV) Test Program

Season	Number of Cycles	Low (°C)	High (°C)	Delta (°C)
Summer	2115	-80	50	130
Winter 1	450	-115	-10	105
Winter 2	450	-110	20	130
Total	3015			

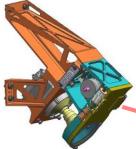
Mars 2020 EECAM Environmental Test Levels

Random Vibration Test Levels

Rover Assemblies**	Frequency, Hz	Flight Acceptance Level	Qualification/ Protoflight Level
Rover Mounted Assemblies * (other than shown below)	20 - 40 40 - 450 450 - 2000 Overall	+ 6 dB/oct 0.04 g ² /Hz - 6 dB/oct 5.6 g _{rms}	+ 6 dB/oct 0.08 g ² /Hz - 6 dB/oct 7.9 g _{rms}
- RSM Mounted Components (with Fn > 120 Hz)	20 – 40 40 – 450 450 – 2000 Overall	+6 dB/oct 0.04 g ² /Hz -6 dB/oct 5.6 Grms	+6 dB/oct 0.08 g ² /Hz -6 dB/oct 7.9 Grms

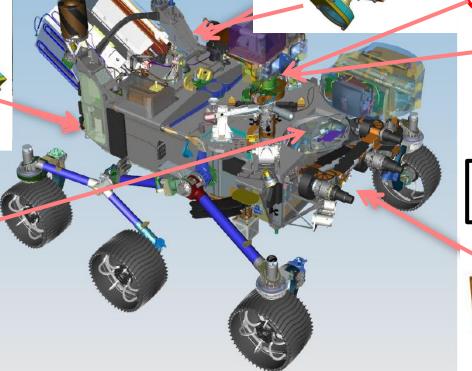
Pyrotechnic Shock Test

Camera	Zone	Frequency, Hz	QUAL, PF Peak SRS Response (Q=10)		
		100	14g		
NavCam	1.4	100-1,600	+10.0 dB/Oct.		
		1,600-10,000	1,400g		
		100	49g		
HazCam	3.5	100-3,000	+7.6 dB/Oct.		
		3,000-10,000	3,500g		
		100	20 g		
CacheCam	CacheCam 2	2 100 - 1,600		+ 10.0 dB / Oct.	
		1,600 - 10,000	2,000 g		

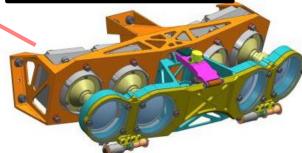

EECAMs on Mars2020

EECAM
Type

NavCam
2
HazCam
6
CacheCam
1
Total
9


Rear +Y HazCam Pod
(1x camera)

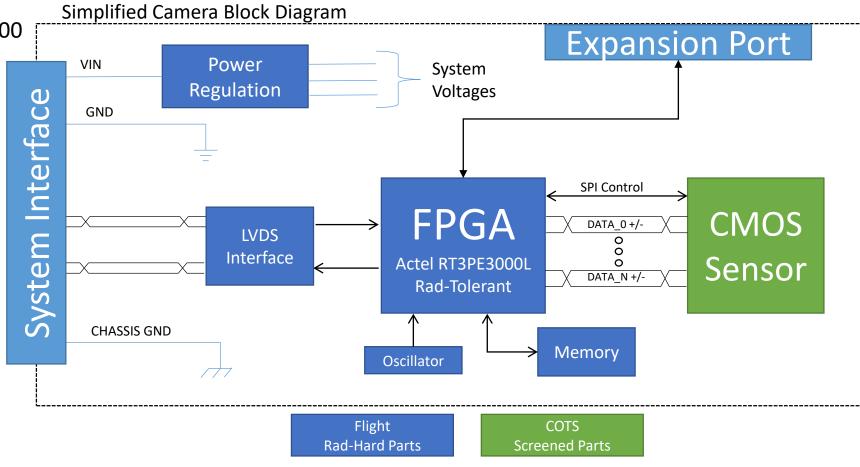
(1x camera)


CacheCam (1x camera)

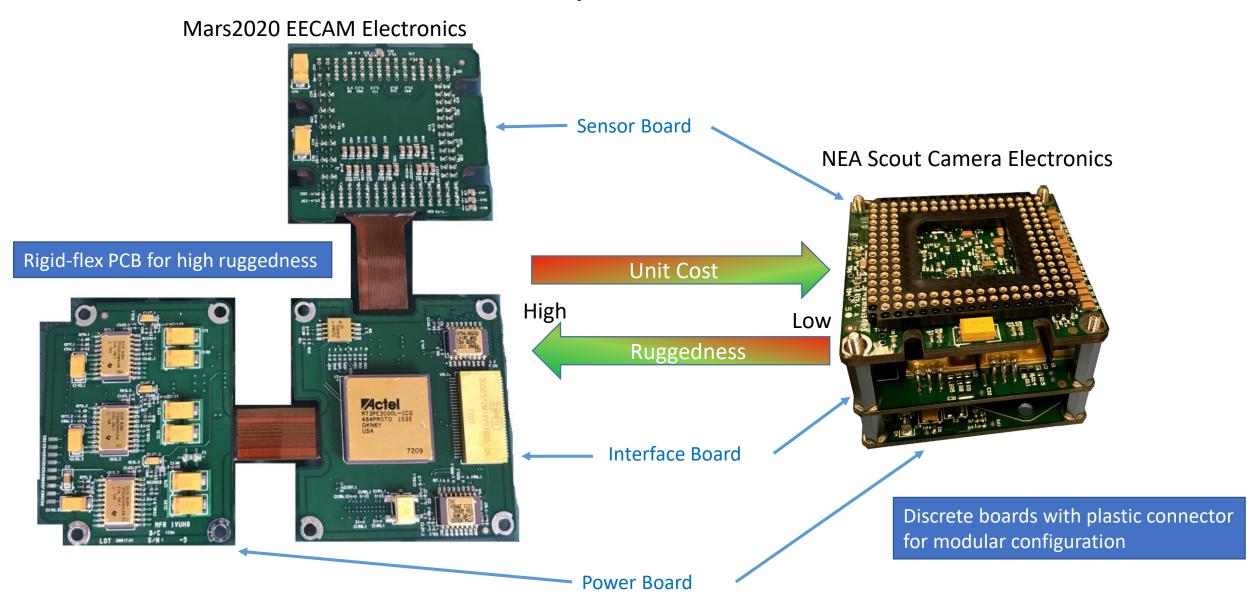
NavCam L+R RSM Pods (2x cameras)

HazCam Bracket (4x cameras)

Infusing EECAM's flexible camera architecture


Camera Mission Electronics		Electronics	Optics			Delivery	Mission	Mission	
	Class		Development	Field of View	iFOV	Status	Date to Mission	Need Date	Launch Date
Mars2020 EECAM		,	Custom	95° x 73°	0.35 mrad/pixel	Flight cameras being built	Oct. 2018 (Planned)	Jan. 2019	7/2020
(9 FM units, 4 FS)		Parts		180° diagonal	0.55 mrad/pixel				
OCO-3 Context Cameras (2 FM units, 1	С	Discrete PCBs, plastic connectors, rad-	COTS C-mount (Internal),	32° x 28°	0.125 mrad/pixel	Flight cameras delivered	Apr. 2017	June 2017	2019 [TBD]
FS)	tolerant parts	F-Mount (External)	56° x 48°	0.22 mrad/pixel					
NEAScout CubeSat (1 FM, 1 FS)	D	Discrete PCBs, plastic connectors, rad- tolerant parts	COTS C-mount	26.9° circle	0.128 mrad/pixel	Flight cameras being tested	Aug. 2017 (Planned)	Sept. 2017	2019 [TBD]
New Horizons/ Discovery Proposals	В		Custom						
Future Smallsat and other proposals	B/C/D		Custom or COTS						

Electronics Architecture


- Reprogrammable, flash-based FPGA
- Physical form-factor/dimensions changes without significant modification to design
- Multiple data protocols over LVDS physical interface (CameraLink, SpaceWire, ...)
- Expansion Port for application-specific interfaces/hardware

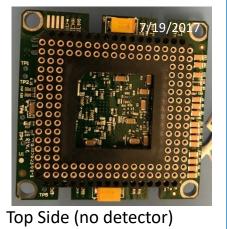
Adaptable sensor interface

First generation for CMV20000

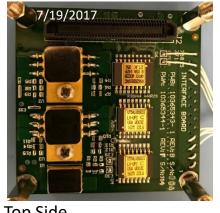
Modular Electronics Implementation

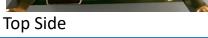
NEAScout Electronics

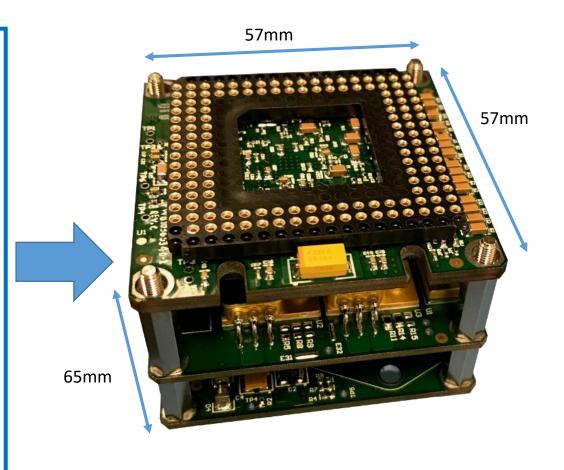
Sensor Board


Interface Board

Bottom Side


Power Board


Bottom Side



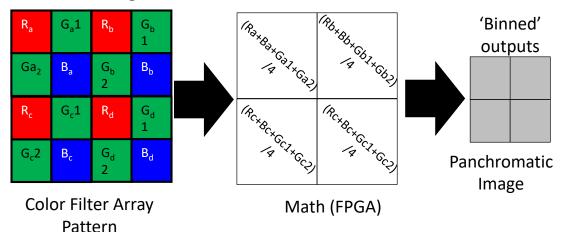
Top Side

NEAScout Integrated Camera Electronics Stack (no detector)

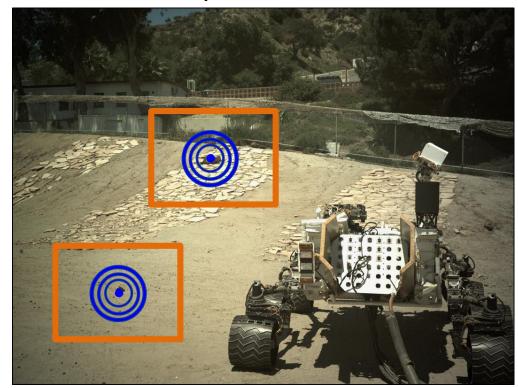
Scalable FPGA Firmware and Data Interface

Flexible Data Interface

- Command and Telemetry interface over Low-Voltage Differential Signal (LVDS) physical layer
- Adaptable protocol options given mission interface


Camera	Physical Layer	Protocol
Mars2020 EECAM	LVDS	Heritage rover CMD/TLM interface
OCO-3	LVDS	Modified CameraLink
NEA Scout	LVDS	Spacewire

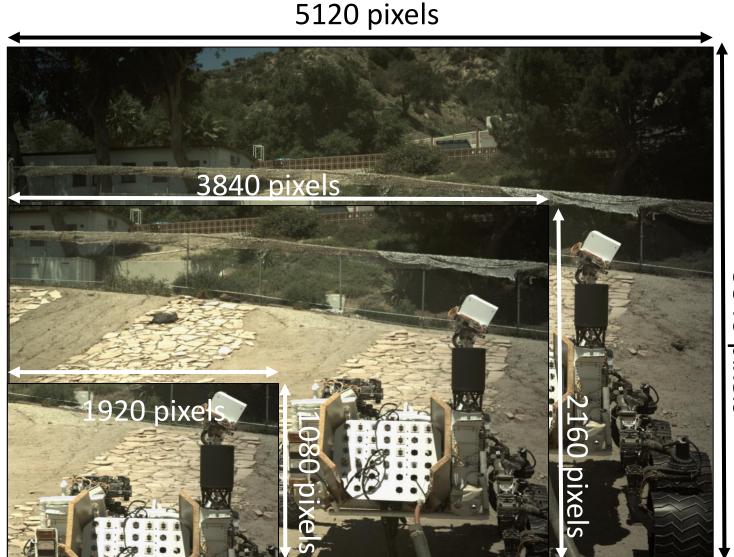
Scalable FPGA Firmware and Data Interface


Image Processing within FPGA

- Image windowing
- Pixel binning and co-adding
 - Multiple modes supporting various binning algorithms (4x4, 2x2, ...)
 - Selectable co-addition factors to increase scene Signal-to-Noise Ratio (SNR) by adding frames
- Future possibilities
 - Color Filter Array (CFA) de-mosaic
 - Compression

2x2 Binning Mode of CFA on Mars2020 EECAM

Selectable 1280 x 960 pixel windows on Mars2020 EECAM



Variable Frame Size and Rate

Camera Frame size vs. Frame Rate

Frame Size (pixels)	Max. Frame Rate* (Frames/sec)
5120 x 3840 (Full frame)	4
3840 x 2160 (4k)	7
1920 x 1080 (1080p)	14

^{*} Frame rate limited by FPGA speed and sensor readout architecture

CMV20000 Active Area

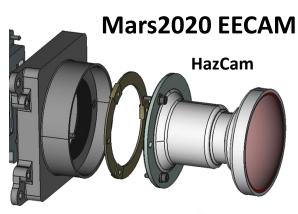
Mars 2020 EECAM FPGA Resource Utilization Estimate

Based on current design implementation

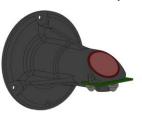
Compile Report				
Resource	Used	Total	Margin	Flight Principles
CORE	8179	75264	89%	20%
IO	120	341	65%	20%
Differential I/O	11	168	93%	20%
Global (Chip + Quadrant)	6	18	66%	20%
RAM/FIFO	8	112	93%	20%

Radiation Tolerance of Camera/Components

Rad-tolerant EEE Parts


- Latchup, SEL immune
- Depending on mission class, screened vs. unscreened flight parts can be baselined to save cost

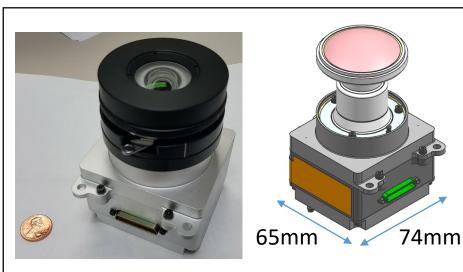
<u>Detector radiation testing @ UC Davis and Texas A&M</u>

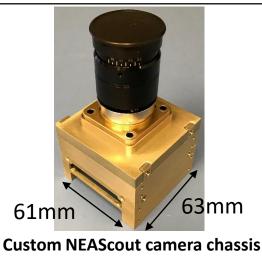

- Total Integrated Dose (TID) performance well beyond Mars2020 requirements (8k TID, RDF=2)
- Latch-up short between power rail and ground triggered by heavy ion interaction in parasitic diode structure
 - Testing at Texas A&M University Cyclotron Facility.
 - Latching behavior found only on one voltage rail
 - Predicted latch-up rate is 0.03 events/yr.
 - Requirement is <10⁻⁴ events/yr
 - Mitigation strategy is power off detector between exposures and factor in relevant detector and EECAM duty cycles
 - Factoring in duty cycle reduces rate to ~10-5/yr
 - Tested device latched-up hundreds of times without loss of imaging functionality NO device failures

Mechanical Configurations

- Allows user to optimize camera footprint to meet constraints of mission
 - Volume, mass, shielding requirements
- Tailored packaging approach given environmental requirements
 - Deep thermal cycling vs. thermally-controlled environments
- Modular Optics mounts
 - Custom or COTS optics supported
 - Single camera electronics box design can support multiple lens configurations

Common lens interface, interchangeable lenses

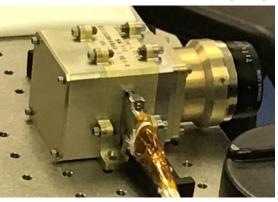



CacheCam

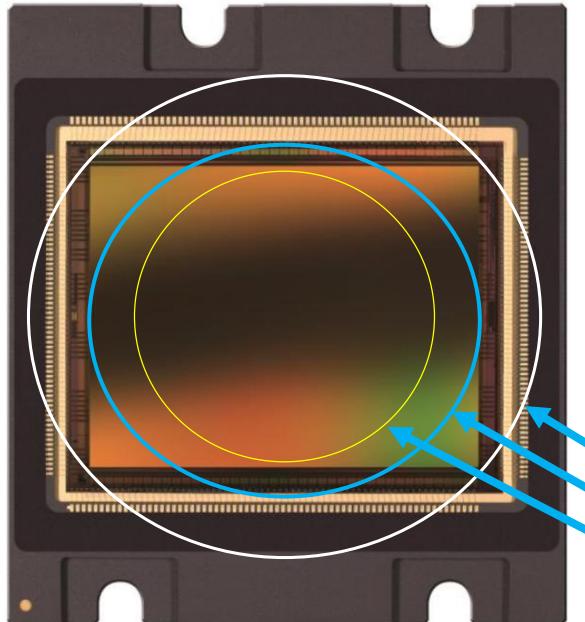
NavCam

Mars2020 EECAM

NEAScout


(C-Mount lens)

cout



External Context Camera (ECC)

Common camera electronics, different lenses (C-Mount vs. F-Mount)

Flexible Optics Configurations

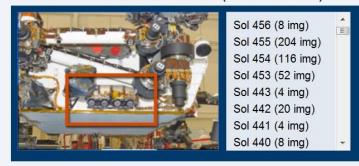
Existing Optics Configurations			
Mars2020 EECAM	Navigation Camera	95°X 71°(H x V), f/12 iFOV < 0.32 mrad/pix	
	Hazard Camera	134°X 110°(H x V), f/12 iFOV ≤ 0.46 mrad/pix	
Orbiting Carbon	Internal Context Camera	32° x 28° (H x V), f/5 iFOV ≤ 0.125 mrad/pix	
Observatory 3	External Context Camera	56° x 48° (H x V), f/2.2 iFOV <u><</u> 0.22 mrad/pix	
NEAScout	OpNav/Science Camera	26.9° image circle, f/2.8 iFOV < 0.128 mrad/pix	

Mars2020 EECAM

OCO-3 Internal Context Camera

NEA Scout

Internal Context Camera


Next Steps

- Support build-to-print or design-off-the-shelf camera developments for upcoming missions.
- Adapt electronics design to support future focal planes (e.g. CMOSIS CMV50000)
 - To go from 20M pixels to 50M pixels
- Proposal support for Science and Engineering planetary camera missions
 - New Frontiers/Discovery (Class B)
 - CubeSat or Technology Demonstration (Class D)

JPL Cost and Schedule Performance with Engineering Cameras Built for Mars Science Laboratory Curiosity

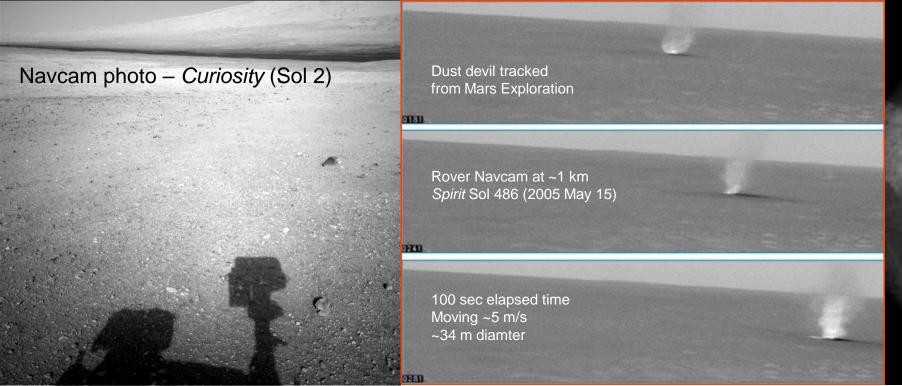
- 26 Cameras built, 12 are on Mars (Others EM & spare, 2 now to InSight).
- 9 Navcams, 17 Hazcams built, delivered under budget.
- 28 month build, delivered May 2008, vs. May 2008 planned when authorized/funded to proceed.
- 10 more cameras each aboard Spirit & Opportunity, plus 2 aboard Phoenix.
- Over 100,000 images and counting, as of 2017 July.
- No in-flight failures.

Front Hazard Avoidance Cameras (Front Hazcams)

Left Navigation Camera (Navcams)

Rear Hazard Avoidance Cameras (Rear Hazcams)

Right Navigation Cameras (Navcams)


http://mars.jpl.nasa.gov/msl/multimedia/raw/2013/11/21 (Compiled by Justin Maki/JPL)

Summary

Nine years on Mars. Matijevic Hill on Endeavor Crater rim. Mosaic from *Opportunity* Pancam Sols 3137 – 3150 (2012 /11/19 – 12/3)

Contact: robert.l.staehle@jpl.nasa.gov 818 354-1176

- Leverage COTS technologies and high-reliability packaging from Mars2020 camera development to enable low-cost cameras for planetary missions
- Modular camera architecture can be tailored to meet mission-specific requirements and resources

